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Abstract

Gravity flows of granular materials through hoppers are considered. For hoppers shaped as general nonaxisymmetric
cones, i.e., ‘‘pyramids’’, the flow inherits some simplified features from the geometry: similarity solutions can be
constructed. Using two different plasticity laws, namely Matsuoka–Nakai and von Mises, those solutions are obtained
by solving first-order nonlinear partial differential algebraic systems for stresses, velocities, and a plasticity function.

A pseudospectral discretization is applied to both models and the resulting flow fields are examined. Some similarities
are found, but important differences appear, especially with regard to velocities near the wall and normal wall stresses.
Preliminary comparisons with recent experiments [J.F. Wambaugh, R.P. Behringer, Asymmetry-induced circulation in
granular hopper flows, in: R. Garcia-Rojo, H.J. Herrmann, S. McNamara (Eds.), Powders and Grains, 2005, pp. 915–
918] based on the present results indicate that for slow granular flows the lesser known Matsuoka–Nakai plasticity law
yields better results than more common models based on a von Mises criterion.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Granular; Similarity; Spectral; Plasticity
1. Introduction

This is the third in a series of papers, see [3,4], on the mechanics of a granular material under the influence
of gravity flowing through converging hoppers. Calculations of granular flows are typically subject to severe
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geometric restrictions. Jenike [6] in the late 1950s was the first to realize that similarity solutions to the equa-
tions of motion can easily be constructed in hoppers of very simple geometry. Working exclusively in cones3
3 Sph
(1), hw
fðr; h;/Þ : 0 < r <1; 0 6 h < hwg; ðhw ¼ constantÞ; ð1Þ

Jenike constructed similarity solutions that are still the bedrock of most engineering studies in this field. Those
solutions inherit both the self-similarity of the domain (r scales out) and its axisymmetry (the solutions only
depend on h and solve a system of ODEs). In [4], the authors generalized this approach to ‘‘pyramids’’, i.e.,
self-similar but not necessarily axisymmetric domains such as
fðr; h;/Þ : 0 < r <1; 0 6 h < Cð/Þg; ð2Þ

where C is a given piecewise smooth 2p-periodic function describing the boundary of the cross section of the
hopper. While the corresponding solutions are of course still self-similar, their structure is much more in-
volved. Those previous results all use plasticity models based on a von Mises condition [10] or a simplified
Mohr–Coulomb condition [8].

Another model was proposed by Matsuoka and Nakai in [7] and recently studied in [2]. In the present
paper, the approach from [4] is applied to Matsuoka–Nakai materials for comparison with von Mises ones.
In Section 2, both models are recalled. Radial solutions in right conical domains for the Matsuoka–Nakai
model are constructed (for the first time) in Section 3. The two models are applied to pyramidal domains
(2) in Section 4. Numerical results are presented in Section 5 while concluding remarks are offered in Section
6.

Our work is motivated by preliminary comparisons with experimental values [11,12] that seem to indicate a
much better match with the lesser known Matsuoka–Nakai condition than with the von Mises one.

2. Plasticity models

The unknowns are the 3-component velocity vector v, the 3 · 3 symmetric stress tensor T, and a scalar plas-
ticity coefficient k. The density q is assumed constant. For slow flows, inertia can be neglected in Newton’s
second law and thus balance of forces reads
r � T ¼ qg; ð3Þ

where g is the (vector) acceleration of gravity. In addition to (3) both models consider two constitutive laws: a
flow rule and a plasticity law.

von Mises model:
V ¼ kdevT ; ð4Þ
jdevT j2 ¼ 2s2ðtrT=3Þ2: ð5Þ
Matsuoka–Nakai model
V ¼ �kdevT�1; ð6Þ
ðtrT ÞðtrT�1Þ ¼ 9ð1þ l2Þ: ð7Þ
In the above equations, V = � 1/2($v + $vT) is the strain rate tensor (note the sign convention) while
devT ¼ T � 1

3
ðtrT ÞI is the deviatoric part of the stress tensor. Further, jÆj denotes the Frobenius norm

jT j2 ¼
P3

i;j¼1T 2
ij. The main material parameter is the coefficient of internal friction l. It is customary to intro-

duce a corresponding angle of internal friction d defined by l = tand (see [8]); further, we also set s = sind.
The properties of the yield surfaces defined by Eqs. (5) and (7) are well known [1,2,10] and can be easily

established in principal stress space, i.e., in terms of the eigenvalues frig3
i¼1 of the stress tensor T. For granular

materials, the stress tensor T measures compressive stresses, i.e., the principal stresses are positive. The von
erical coordinates are used exclusively in this paper: (r,h,/) are the usual spherical coordinates, / being the azimuthal angle. In Eq.
is the half opening angle of the cone.
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Mises yield surface (5) is a cone with two nappes (or sheets). One nappe is contained in the physically relevant
positive octant {ri > 0, i = 1,2,3} if and only if d < 60� [10]. The structure of the Matsuoka–Nakai yield sur-
face is more complicated, but again, a cone of one nappe is contained in the positive octant (regardless of d),
see [1] for details on that case.

Inside a container, the flow is subject to boundary conditions. Wall impenetrability reads
vN ¼ 0; ð8Þ

where vN = v Æ N is the normal velocity, N being the unit interior normal. Two additional boundary conditions
come from Coulomb’s law of sliding friction. The surface traction s—i.e., the force exerted by the wall on the
material—is given by si ¼

P3
j¼1T ijN j. If the vector s has normal component sN and tangential component

sT = s � sNN, then
sT ¼ �lwsN ðv=jvjÞ; ð9Þ

where lw is the coefficient of sliding friction between the wall and the material.

3. Radial flows

The first hopper geometry we consider is that of a regular vertical cone of Eq. (1). As first noticed by Jenike
[6], the invariance of the domain (1) under the transformation r ´ c r, c > 0, leads to the existence of similarity
solutions. For Matsuoka–Nakai, these solutions scale as
T ijðr; h;/Þ ¼ rTijðh;/Þ; viðr; h;/Þ ¼ 1
r2Viðh;/Þ; kðr; h;/Þ ¼ 1

rLðh;/Þ; ð10Þ
where Tij and vi are any component of the stress tensor and velocity vector, respectively, and where Tij, Vi

and L are the similarity solutions to be computed. For von Mises, the scaling for k differs. See [4].
We now derive the equations governing the flow in the domain (1) for the Matsuoka–Nakai model. The

corresponding equations for the von Mises case have been extensively studied elsewhere [6,8,10]. By axisym-
metry, the (scaled) stress tensor and velocity vector, respectively, simplify to
T ¼
Trr Trh 0

Trh Thh 0

0 0 T//

2
64

3
75 and V ¼

Vr

0

0

2
64

3
75: ð11Þ
Under the above assumptions, the grains follow radial lines; the corresponding solutions are referred to as
radial solutions. Assuming the stress and velocity field inherit the axisymmetric character of the domain, none
of the above variables depends on /. The problem is thus reduced to finding the six unknowns Trr, Trh, Thh,
T//, Vr and L (L is eliminated below).

Conservation of momentum (3) yields two nontrivial scalar relations, another equation comes from the
yield condition (7) while two come from the flow rule (6) after elimination of k (and thus L). Under the above
assumptions, the hh- and //-components of the strain rate tensor are equal. The flow rule (6) implies that
(devT�1)hh = (devT�1)//, or equivalently
TrrT// ¼TrrThh �T2
rh; in ½0; hw�: ð12Þ
The yield condition (7) together with the above relation then leads to
ðTrr þThh þT//Þð2Trr þThhÞ ¼ 9ð1þ l2ÞTrrT//; in ½0; hw�: ð13Þ

The two equations contributed by conservation of momentum are as follows
d

dh
Trh þ 3Trr þ cot hTrh �Thh �T// ¼ �qg cos h; in ð0; hwÞ ð14Þ

d

dh
Thh þ 4Trh þ cot hðThh �T//Þ ¼ qg sin h; in ð0; hwÞ: ð15Þ
Eqs. (12)–(15) form an independent system for the stress unknowns Trr, Trh, Thh, T//. Eq. (13) can be
rewritten
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Fig. 1. Radial solution flow for both models. Left: comparison of average stress ðTrr þThh þT//Þ=3; right: comparison of vertical
velocity Vz. Material parameters: angle of internal friction d = 30�, half opening angle hw = 30�, coefficient of wall friction lw = 0.3.
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Trr Thh T//½ �
2 3=2 1� 9

2
ð1þ l2Þ

3=2 1 1=2

1� 9
2
ð1þ l2Þ 1=2 0

2
64

3
75

Trr

Thh

T//

2
64

3
75 ¼ 0:
The matrix appearing in the previous relation has full rank, its determinant is equal to �18� 153
4

l2 � 81
4
l4 < 0,

and consequently its eigenvalues have different signs. Therefore (13) defines a real quadratic cone.
The second equation resulting from the flow rule (6) can be written
d

dh
Vr ¼ �

6Trh

Trr � T hh
Vr; in ð0; hwÞ: ð16Þ
The complete system (12)–(16) which consists of two algebraic constraints and three ODEs is closed by three
boundary conditions
Trhð0Þ ¼ 0; ð17Þ
�TrhðhwÞ ¼ lwThhðhwÞ; ð18Þ
Vrð0Þ ¼ �1: ð19Þ
Condition (17) corresponds to Trh being odd in this geometry. Relation (18) directly follows from Coulomb’s
law of sliding friction (9). Finally, (19) is a normalization condition, as (16) only defines Vr up to a positive
multiplicative constant.

To solve the above system numerically, the interval [0,hw] is divided into N cells of equal size Dh = hw/N.
The numerical unknowns are approximate values at the nodes hi, i = 0, . . . ,N, i.e., Ti

rr, T
i
rh, Ti

hh, Ti
// and Vi

r.
Those unknowns are determined as follows

� the Ti
//s are eliminated through (12),

� Eqs. (14)–(16) are discretized by the midpoint rule, i.e., at hi+1/2 = (hi + hi+1)/2, i = 0, . . . ,N � 1,
� Eq. (13) is enforced at the nodes hi, i = 0, . . . ,N,
� the boundary conditions (17)–(19) are imposed.

This results in a system of 5(N + 1) nonlinear equations.4 The velocity can be computed in a postprocessing
step as the stress equations do not depend on it.

Radial solutions are shown in Fig. 1. While the two models differ somewhat in this geometry, much greater
differences become apparent in nonaxisymmetric hoppers.
e current nonlinear solver uses a trust region dogleg method [9] with finite difference Jacobians; other quasi-Newton solvers are
ed to work equally well.
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4. Flows in pyramidal domains

The geometry is now generalized from right regular cones (1) to ‘‘pyramidal domains’’ (2). While the scaling
argument leading to (10) is still valid, the loss of axisymmetry prevents the simplifications that lead to (11).
Consequently, all 10 unknowns Trr, Trh, Thh, Tr/, Th/, T//, Vr, Vh, V/ and L are now functions of both
h and /. In what follows, P ¼ 1

3
ðTrr þThh þT//Þ is the average stress, while P�1 ¼ 1

3
ððT�1Þrrþ

ðT�1Þhh þ ðT
�1Þ//Þ with ðT�1Þij referring to the ij-entry of the tensor T�1 (note that P�1 6¼ 1=P).

von Mises model
ohTrh þ cscðhÞo/Tr/ þ 3Trr �Thh �T// þ cotðhÞTrh ¼ �qg cosðhÞ; ð20Þ
ohThh þ cscðhÞo/Th/ þ 4Trh þ cotðhÞðThh �T//Þ ¼ qg sinðhÞ; ð21Þ
ohTh/ þ cscðhÞo/T// þ 4Tr/ þ 2 cotðhÞTh/ ¼ 0; ð22Þ
2Vr ¼LðTrr �PÞ; ð23Þ

� 1

2
ðohVr � 3VhÞ ¼LTrh; ð24Þ

� ohVh �Vr ¼LðThh �PÞ; ð25Þ

� 1

2
ðcscðhÞo/Vr � 3V/Þ ¼LTr/; ð26Þ

� 1

2
ðohV/ þ cscðhÞo/Vh � cotðhÞV/Þ ¼LTh/; ð27Þ

� ðcscðhÞo/V/ þVr þ cotðhÞVhÞ ¼LðT// �PÞ; ð28Þ

jdevTj2 ¼ 2s2P2: ð29Þ
Matsuoka–Nakai model
ohTrh þ cscðhÞo/Tr/ þ 3Trr �Thh �T// þ cotðhÞTrh ¼ �qg cosðhÞ; ð20Þ
ohThh þ cscðhÞo/Th/ þ 4Trh þ cotðhÞðThh �T//Þ ¼ qg sinðhÞ; ð21Þ
ohTh/ þ cscðhÞo/T// þ 4Tr/ þ 2 cotðhÞTh/ ¼ 0; ð22Þ
2Vr ¼ �LððT�1Þrr �P�1Þ; ð30Þ

� 1

2
ðohVr � 3VhÞ ¼ �LðT�1Þrh; ð31Þ

� ohVh �Vr ¼ �LððT�1Þhh �P�1Þ; ð32Þ

� 1

2
ðcscðhÞo/Vr � 3V/Þ ¼ �LðT�1Þr/; ð33Þ

� 1

2
ðohV/ þ cscðhÞo/Vh � cotðhÞV/Þ ¼ �LðT�1Þh/; ð34Þ

� ðcscðhÞo/V/ þVr þ cotðhÞVhÞ ¼ �LððT�1Þ// �P�1Þ; ð35Þ

ðTrr þThh þT//Þ ðT�1Þrr þ ðT
�1Þhh þ ðT

�1Þ//

� �
¼ 9ð1þ l2Þ: ð36Þ
The above equations have to be satisfied on the spherical cap fðh;/Þ;�p < / < p; 0 < h < Cð/Þg. The bound-
ary conditions ((8) and (9)) can be expressed in terms of the above unknowns. The unit interior normal vector
N on the outside wall h ¼ Cð/Þ takes the form
N ¼ ½N r;N h;N/� ¼ ½0;� sin h;C0ð/Þ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 hþ C0ð/Þ2

q
:
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Therefore, when h ¼ Cð/Þ, 0 < / < 2p, one has
5 Co
below
and th
the ab
VhN h þV/N/ ¼ 0; ð37Þ
V/ðTrhN h þTr/N/Þ �Vr½�ThhN 2

hN/ þTh/N hð1� 2N 2
/Þ þT//N/N 2

h� ¼ 0; ð38Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTrhN h þTr/N/Þ2 þ ðThhN hN/ �T//N hN/ þTh/ðN 2

/ � N 2
hÞÞ

2
q

¼ lwðThhN 2
h þ 2Th/N hN/ þT//N 2

/Þ; ð39Þ
where (37) corresponds to condition (8). The vectorial condition (9) is rewritten into two scalar conditions.
First, we impose sT · v = 0 on the wall; the cross product of two two-dimensional vectors being a scalar, this
leads to (38). Second, |sT| = lwsN holds, leading to (39). From Section 2, the stress tensor T is positive definite;
consequently, the right hand of (39) is positive since TN = NtTN > 0.5 The above set of equations defines the
unknowns Vr, Vh, V/ and L only up to a positive multiplicative constant. To eliminate this indeterminacy,
the value of one component of the velocity, say Vr, is fixed at one point in the computational domain. Here,
we choose (see also (19))
VrðH0;U0Þ ¼ vH < 0; ð40Þ

where H0 and U0 are defined below and where vw in effect scales the flow rate out of the hopper. Note that no
conditions are needed at h = 0 (or more precisely, considering only nonsingular solutions at that point is a
boundary condition). Further, 2p-periodicity is imposed in the /-direction.

Along with the above unknowns, a stream function W is computed to illustrate the appearance of secondary
circulation in the velocity field. Under assumption (10), the incompressibility condition divv = 0 reads here
oh sin hVhð Þ þ o/V/ ¼ 0:
A stream function W can then be introduced through
o/W ¼ sin hVh and ohW ¼ �V/: ð41Þ
5. Numerical results

The discretization used to solve the above system is identical to the one used in [4] and is only briefly
described here. In order to simplify the numerics, the problem is mapped onto a rectangular computational
domain. We define the new coordinates
H ¼ hw
h

Cð/Þ and U ¼ /:
The computational domain is now simply (0,hw] · [ � /w,/w), where /w corresponds to the smallest interval of
periodicity of the solution in the /-direction.

Eqs. (20)–(39) are written in the new coordinate system. The resulting problem can be discretized by
collocation; Chebyshev collocation at the Chebyshev–Gauss–Radau points is used in H, while Fourier-cosine
collocation at the Fourier collocation points is used in U. More precisely, the numerical solution takes the
form
U NMðH;UÞ ¼
XN�1

n¼0

XM=2�1

m¼�M=2

UnmwnðHÞe
imp U

/w
þ1

� �
; ð42Þ
where fwng
N�1
n¼0 are the Lagrange interpolation polynomials at the Chebyshev–Gauss–Radau nodes on (0,hw].

To illustrate the differences between the two plasticity models, we consider two families of pyramidal
domains which approximate industrial hoppers with square and oblong cross sections, respectively. The for-
mer family is described by
nditions (38, 39) are invariant under a sign change of sT. Clearly, only the sign given in (9) is physical. The numerical results given
have been checked to correspond to physical solutions: the correct sign in (39) is taken, the computed stress tensor is positive definite
e plasticity factor L is positive. This sign indeterminacy does not exist in the purely radial case where (39) simplifies into (18). For
ove full problem, physical radial solutions are used as initial solutions, see [4] for more details.
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Cð/Þ ¼ hw

ðcosp /þ sinp /Þ1=p
; 2 6 p <1; ð43Þ
see Fig. 2, left. These domains are similar to the unit ball in the p-norm. In the calculations below, p was taken
as 20 and hw is 30�.

The second family is best described geometrically, see Fig. 2, right.

5.1. Explanation of figures

Figs. 3 and 5 compare the two different plasticity models in the two above geometries, having evaluated all
quantities on a horizontal plane normal to the z-axis. In each row, von Mises is on the left and Matsuoka–
Nakai on the right. The first row shows the average stresses, P. The second row presents the vertical component
of the velocity, i.e., Vz ¼V � ez, scaled such that Vz attains a minimum of�1 (i.e. a maximum in magnitude, in
the negative z-direction). In the third row, color represents speed in the horizontal plane, i.e., jV�V � ezezj and
black curves are streamlines (i.e., level lines of the stream function W) delineating areas of secondary
circulation.

5.2. Results for square hoppers

Fig. 3 makes apparent the differences between the two constitutive laws in the square hopper. While the
stress fields for Matsuoka–Nakai and von Mises are similar, the former displays stronger corner effects.
Not only does Matsuoka–Nakai achieve a higher stress in the corners, but the gradient of the stress field is
also higher in those regions.

A striking difference in the square hopper is that von Mises predicts a flow which appears much nearer to
the mass flow limit, the point at which some portion of the material ceases to deform [8]. Under the von Mises
plasticity law, the bulk of the material nearest to the walls is moving downward slowly and nearly uniformly
while a roughly circular channel in the center is moving and deforming very rapidly. There are similar slow
regions near the walls under the Matsuoka–Nakai plasticity law, but the appearance of a fast-moving channel
in the center is less pronounced.
Left: cross section of the ‘‘square’’ hopper (43) for p = 2,4,20 (p = 20 and hw = 30� in the calculations below); right: cross section
oblong, nozzle-shaped hopper (p = 2 and hw = 30� in the calculations below).



Fig. 3. Flow in a vertical square hopper (43) with p = 20 and hw = 30�; material parameters are: angle of internal friction d = 30�,
coefficient of wall friction lw = 0.3. Left: von Mises; right pictures: Matsuoka–Nakai. From top to bottom: average stress P ¼ 1

3
ðTrr þ

Thh þT//Þ, vertical component of velocity Vz and horizontal speed/streamlines (see text for details).
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Another important distinction between the two models in the square hopper is that the secondary circula-
tion is an order of magnitude stronger for Matsuoka–Nakai than for von Mises. The third row in Fig. 3 dem-
onstrates this difference by displaying the horizontal speed (jV�V � ezezj). Preliminary comparison with
laboratory experiments shows uncanny agreement with the Matsuoka–Nakai prediction, and casts doubt
on the accuracy of the von Mises prediction [11]. A more detailed comparison between the models and exper-
imental results will be pursued in a forthcoming work [12], see also Section 5.4.

The representation of speed in the third row of Fig. 3 also reveals the effect of the fast-moving center chan-
nel in the von Mises case. This channel pulls material in from the sides inducing the fastest horizontal speed on
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the hopper’s interior; for Matsuoka–Nakai, the fastest speed is at the wall where material is being pulled from
near the corners toward the steepest point along the hopper wall.

The third row of Fig. 3 also shows the location of circulation cells as black streamlines. Grains along a wall
move from the corner toward the midpoint on that wall, where the wall is steepest. There are also circulation
cells wholly in the interior of the hopper. In both models, however, the secondary circulation is a small effect,
from 2 to 4 orders of magnitude smaller than the vertical component of velocity.

Another effect of the loss of axisymmetry can be plainly seen in the normal stress at the wall. In Fig. 4, left,
the normal stress along the circumference of the square hopper is computed for both models. For both models,
the maximum normal stress is found at the corners. Further, those corner effects are more pronounced for
Matsuoka–Nakai than they are for von Mises. It should also be noted that this kind of predictions is fully
outside the range of typical radial models such as Jenike’s. Accurate predictions of the wall stresses are fun-
damental for the study of silo failures. Such a study could be performed by coupling the current results with
shell stress modeling codes, reinforcing the importance of the present approach.

5.3. Results for oblong hoppers

Results showing the same data, albeit in an oblong hopper geometry, are shown in Fig. 5. In the first row of
graphs, the general shape of the average stress fields is similar for both models, with the maximum average
stress along the wall at the narrow end of the hopper and the minimum along the steeper flat wall. However,
along the flat walls, the Matsuoka–Nakai plasticity law predicts an almost uniform average stress while the
von Mises law predicts an average stress with more variation.

This is also reflected in the normal stress, seen in Fig. 4, right, where the maximum and minimum values of
the normal stress are nearly identical between the two models, but the Matsuoka–Nakai model has a more
uniform normal stress along the flat walls of the hopper.

Returning to Fig. 5, the second row of graphs again represents the vertical component of velocity. Unlike the
square hopper, both plasticity laws make similar predictions, both in magnitude and in the shape of the field.

The third row of graphs in Fig. 5 shows that, again, the circulation characteristics predicted by the two
models differ substantially. While the circulation cells themselves (demarcated by black curves) are not dissim-
ilar, the speed of the circulation (indicated by color) predicted by the Matsuoka–Nakai model is an order of
magnitude larger than that of the von Mises model. Furthermore, for the von Mises plasticity law, there are
two regions of grains internal to the hopper which are moving about as rapidly as grains move along the steep,
flat wall. This effect is not nearly so strong for the Matsuoka–Nakai plasticity law.
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Fig. 4. Normal stress on hopper walls. Square hopper, left; oblong hopper; right. Material parameters: angle of internal friction d = 30�,
half opening angle hw = 30�, coefficient of wall friction lw = 0.3.



Fig. 5. Flow in a vertical nozzle shaped hopper (see Fig. 2); material parameters are: angle of internal friction d = 30�, coefficient of wall
friction lw = 0.3. Left pictures: von Mises; right pictures: Matsuoka–Nakai. From top to bottom: average stress P, vertical component of
velocity Vz and horizontal speed/streamlines (see text for details).
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Fig. 6. Comparison with experimental results for a tilted conical hopper (hw = 24�, l = 0.42, lw = 0.34); dotted line, von Mises; dashed
line, Matsuoka–Nakai.
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5.4. Preliminary comparison with experimental results

Preliminary comparison with experimental results are reported in Fig. 6. The test hopper is an approxi-
mately-conical hopper (16 sided regular polygonal cross-section, with 14 brass wedges and two clear Plexiglas
wedges) filled with standard Ottawa sand. The half opening angle is hw = 24�, the coefficient of internal fric-
tion is l = 0.42 while the coefficient of wall friction is lw = 0.34. The hopper is tilted from its vertical position
by an angle � and the ratio of the radial velocity vr over the angular velocity component v/ is measured at a
point on the wall. For more details and more complete results see [12]. As can clearly be seen from Fig. 6, the
von Mises model seriously underestimates secondary circulation while the Matsuoka–Nakai model presents
good agreement with the experimental results.

6. Conclusions

The construction of similarity solutions corresponding to granular flows in nonaxisymmetric hoppers was
started in [4,5]; it is extended here to Matsuoka–Nakai materials. While Jenike’s original method is limited
to conical hoppers (right circular cones), the present approach can be applied to pyramidal (self-similar) hop-
pers of arbitrary cross section that are common in industrial applications. It should be noted however that the
case of general fully three dimensional containers is outside the scope of the present contribution and, to the
authors’ knowledge, is still a largely open problem (in part due to the difficulty of setting up a well-posed math-
ematical formulation).

Phenomenological arguments leading to plasticity laws such as those considered here are poor substitutes
for derivations from first principles, which regrettably are lacking in the present field. It is thus fundamental to
be able to test and compare such models against one another and more importantly against experimental data.
The present contribution is a necessary step in this direction. Preliminary comparisons with experiments
[11,12] indicate that the Matsuoka–Nakai plasticity condition leads to results that are much closer to exper-
imental data than the widely used von Mises condition (strictly within the present context, of course). Our
approach also gives access to fundamental practical information, such as the importance of corner effects
on wall stresses.
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